organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(p-Tolyliminomethyl)-1,1'-binaphthol ethanol solvate

Wei Wu, Xiao-Qing Qian, Lin-Zhi Zhong, Kun Wang and Rui-Xiang Li*

Institute of Homogeneous Catalysis, Department of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China Correspondence e-mail: sculiruixiang@163.com

Received 5 June 2007; accepted 28 June 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.059; wR factor = 0.188; data-to-parameter ratio = 13.8.

The binaphthol backbone in the title compound, $C_{28}H_{21}NO_{2}$ - $C_{2}H_{5}OH$, suggests that it has potential for use in asymmetric synthesis with both hydroxy groups and the imino group providing sites for coordination with metal ions as an O/N heterotridentate ligand. There is one intramolecular O– $H \cdots N$ hydrogen bond that forms a five-membered ring and two intermolecular O– $H \cdots O$ hydrogen bonds to the ethanol solvent, linking two ethanol molecules and two naphthol molecules around a center of symmetry.

Related literature

For background on the application of salen complexes to asymmetric catalysis see: Raffaelli *et al.* (1998); for synthesis see Chin *et al.* (2004).

Experimental

Crystal data $C_{28}H_{21}NO_2 \cdot C_2H_6O$ $M_r = 449.53$

Triclinic, $P\overline{1}$ a = 10.540 (5) Å

$b = 10.740 (3) \text{ Å} c = 10.779 (3) \text{ Å} \alpha = 82.17 (2)^{\circ} \beta = 83.82 (3)^{\circ} \gamma = 82.89 (3)^{\circ} V = 1194.4 (8) \text{ Å}^{3}$	Z = 2 Mo K α radiation μ = 0.08 mm ⁻¹ T = 292 (2) K 0.26 × 0.25 × 0.13 mm
Data collection	
Enraf-Nonius CAD-4 diffractometer Absorption correction: none 4426 measured reflections 4391 independent reflections	2054 reflections with $I > 2\sigma(I)$ $R_{int} = 0.010$ 3 standard reflections every 300 reflections intensity decay: 3.2%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.188$ S = 0.94 4391 reflections 319 parameters	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.21$ e Å ⁻³ $\Delta \rho_{\rm min} = -0.24$ e Å ⁻³

Table 1

Hydrogen-bond geometry (Å, °).

)····A I	$D - H \cdots A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.753 (3) 1 .612 (3) 1 .844 (3) 1	164 148 (4) 155

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *DIFRAC* (Gabe & White, 1993); cell refinement: *DIFRAC*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Version 1.2; Bruno *et al.*, 2002); software used to prepare material for publication: *SHELXL97*.

The authors thank Sichuan University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2134).

References

- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.
- Chin, J., Kim, D. C., Kim, H. J., Francis, B. P. & Kim, K. M. (2004). Org. Lett. 6, 2591–2593.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gabe, E. J. & White, P. S. (1993). *DIFRAC*. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.

Raffaelli, A., Minutolo, F., Feringa, B. L. & Salvadori, P. (1998). *Inorg. Chim. Acta*, **275–276**, 462–469.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3492 [doi:10.1107/S1600536807031832]

3-(p-Tolyliminomethyl)-1,1'-binaphthol ethanol solvate

W. Wu, X.-Q. Qian, L.-Z. Zhong, K. Wang and R.-X. Li

Comment

Copper and manganese complexes containing Schiff bases as ligands have potential interest in homogeneous catalysis(Raffaelli *et al.*, 1998). In this paper, we present and X-ray crystallographic analysis of the title compound (I), as a continuation of our previous studies. The binol backbone indicates that it has potential as a ligand in asymmetric synthesis.

As shown in Fig. 1, an intramolecular O—H···N hydrogen bond forms a five-membered ring. Both hydroxyl group and the imino moiety provide potential sites for coordination with metal ions as a O/N heterotridenate ligand.

The compounds (I) are connected by O—H…O hydrogen bonds to the ethanol, Fig 2.

In the crystal structure there are close approaches between the ring systems in neighboring molecules, for example, C11–15, 20 and C11–15, 20 rings, C11–15, 20 and C15–20 rings, and C11–15, 20 and C22–27 rings, the corresponding distances between ring centroids are 3.875 Å, 3.956Å and 4.110 Å.

Experimental

The salen ligand, 3-((*p*-tolylimino)methyl)-di-1,1'-binaphthol was prepared by condensation of 3-carboxaldehyde-1,1'-binaphthol with *p*-toluidine, which was prepared in reported methods (Chin, J. *et al.*, 2004). Crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol /methylene chloride (1:5) solution of the compound.

Refinement

H2 was located in a difference Fourier map and refined with restraints on the O—H distance. The remaining H atoms were placed in calculated positions and refined in the riding-model approximation.

Figures

Scheme 1

Fig. 1. A perspective view, with displacement ellipsoids drawn at the 30% propability level. Fig. 2. Intermolecular hydrogen bonding in the crystal structure of (I).

3-(p-Tolyliminomethyl)-1,1'-binaphthol ethanol solvate

Crystal data	
$C_{28}H_{21}NO_2 \cdot C_2H_6O$	Z = 2
$M_r = 449.53$	$F_{000} = 476$
Triclinic, P1	$D_{\rm x} = 1.250 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 10.540 (5) Å	Cell parameters from 24 reflections
b = 10.740 (3) Å	$\theta = 4.8 - 9.1^{\circ}$
c = 10.779 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 82.17 \ (2)^{\circ}$	T = 292 (2) K
$\beta = 83.82 \ (3)^{\circ}$	Block, orange
$\gamma = 82.89 \ (3)^{\circ}$	$0.26 \times 0.25 \times 0.13 \text{ mm}$
V = 1194.4 (8) Å ³	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\text{int}} = 0.010$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.9^{\circ}$
T = 294(2) K	$h = -12 \rightarrow 12$
$\omega/2\theta$ scans	$k = -4 \rightarrow 12$
Absorption correction: none	$l = -12 \rightarrow 13$
4426 measured reflections	3 standard reflections
4391 independent reflections	every 300 reflections
2054 reflections with $I > 2\sigma(I)$	intensity decay: 3.2%

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.059$
$wR(F^2) = 0.188$
S = 0.94
4391 reflections
319 parameters
D:

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sqrt{s^2(F_o^2) + (0.1107P)^2]}$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.21$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³ Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.0738 (2)	0.3272 (2)	0.5630 (2)	0.0734 (7)
H1	0.0534	0.3780	0.6139	0.110 (11)*
O2	0.0508 (2)	0.27804 (19)	0.2159 (2)	0.0599 (6)
H2	0.007 (4)	0.264 (4)	0.164 (4)	0.100 (15)*
Ν	-0.0886 (2)	0.1489 (2)	0.1058 (2)	0.0507 (6)
C1	0.3334 (3)	0.3271 (2)	0.3103 (3)	0.0466 (7)
C2	0.3843 (3)	0.2626 (3)	0.2077 (3)	0.0569 (8)
H2A	0.3479	0.1920	0.1929	0.073 (2)*
C3	0.4861 (3)	0.3018 (3)	0.1295 (3)	0.0709 (10)
H3	0.5179	0.2577	0.0622	0.073 (2)*
C4	0.5433 (3)	0.4069 (3)	0.1490 (3)	0.0729 (10)
H4	0.6120	0.4330	0.0942	0.073 (2)*
C5	0.4991 (3)	0.4711 (3)	0.2475 (3)	0.0623 (8)
H5	0.5387	0.5404	0.2605	0.073 (2)*
C6	0.3942 (3)	0.4345 (2)	0.3307 (3)	0.0489 (7)
C7	0.3423 (3)	0.5013 (3)	0.4312 (3)	0.0567 (8)
H7	0.3812	0.5701	0.4465	0.073 (2)*
C8	0.2379 (3)	0.4687 (3)	0.5060 (3)	0.0611 (8)
H8	0.2045	0.5163	0.5703	0.073 (2)*
C9	0.1779 (3)	0.3613 (2)	0.4873 (3)	0.0510(7)
C10	0.2273 (3)	0.2907 (2)	0.3919 (3)	0.0454 (7)
C11	0.1714 (3)	0.1708 (2)	0.3783 (2)	0.0451 (7)
C12	0.0883 (3)	0.1695 (2)	0.2894 (3)	0.0455 (7)
C13	0.0378 (3)	0.0548 (2)	0.2726 (2)	0.0445 (7)
C14	0.0729 (3)	-0.0547 (2)	0.3489 (2)	0.0450 (7)
H14	0.0388	-0.1284	0.3400	0.073 (2)*
C15	0.1591 (3)	-0.0574 (2)	0.4397 (2)	0.0440 (7)
C16	0.1966 (3)	-0.1712 (3)	0.5162 (3)	0.0526 (8)
H16	0.1611	-0.2444	0.5081	0.073 (2)*
C17	0.2839 (3)	-0.1750 (3)	0.6016 (3)	0.0620 (8)
H17	0.3086	-0.2501	0.6513	0.073 (2)*
C18	0.3356 (3)	-0.0639 (3)	0.6129 (3)	0.0657 (9)
H18	0.3965	-0.0669	0.6700	0.073 (2)*

C19	0.3007 (3)	0.0483 (3)	0.5442 (3)	0.0567 (8)
H19	0.3362	0.1204	0.5562	0.073 (2)*
C20	0.2104 (3)	0.0561 (2)	0.4543 (2)	0.0444 (7)
C21	-0.0490 (3)	0.0512 (3)	0.1792 (3)	0.0484 (7)
H21	-0.0776	-0.0258	0.1718	0.073 (2)*
C22	-0.1786 (3)	0.1411 (3)	0.0189 (3)	0.0482 (7)
C23	-0.2544 (3)	0.0420 (3)	0.0260 (3)	0.0579 (8)
H23	-0.2474	-0.0246	0.0906	0.073 (2)*
C24	-0.3389 (3)	0.0430 (3)	-0.0618 (3)	0.0568 (8)
H24	-0.3867	-0.0250	-0.0572	0.073 (2)*
C25	-0.3554 (3)	0.1417 (3)	-0.1573 (3)	0.0567 (8)
C26	-0.2799 (3)	0.2399 (3)	-0.1640 (3)	0.0606 (8)
H26	-0.2877	0.3069	-0.2282	0.073 (2)*
C27	-0.1936 (3)	0.2392 (3)	-0.0768 (3)	0.0561 (8)
H27	-0.1443	0.3062	-0.0827	0.073 (2)*
C28	-0.4529 (3)	0.1425 (3)	-0.2510 (3)	0.0725 (10)
H28A	-0.5307	0.1145	-0.2076	0.172 (9)*
H28B	-0.4191	0.0868	-0.3120	0.172 (9)*
H28C	-0.4708	0.2268	-0.2927	0.172 (9)*
O3	0.0233 (2)	0.4606 (2)	0.7668 (2)	0.0754 (7)
H3A	-0.0169	0.5313	0.7612	0.110 (11)*
C29	0.1223 (4)	0.4550 (4)	0.8508 (4)	0.0950 (13)
H29A	0.0844	0.4794	0.9312	0.170 (16)*
H29B	0.1837	0.5136	0.8158	0.170 (16)*
C30	0.1883 (5)	0.3249 (5)	0.8689 (5)	0.1227 (17)
H30A	0.2597	0.3233	0.9177	0.172 (9)*
H30B	0.2188	0.2983	0.7885	0.172 (9)*
H30C	0.1294	0.2688	0.9124	0.172 (9)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0815 (17)	0.0628 (14)	0.0813 (16)	-0.0284 (12)	0.0206 (13)	-0.0314 (12)
O2	0.0766 (16)	0.0398 (11)	0.0687 (14)	-0.0135 (10)	-0.0299 (12)	-0.0018 (10)
Ν	0.0520 (15)	0.0505 (14)	0.0535 (14)	-0.0095 (11)	-0.0157 (12)	-0.0093 (12)
C1	0.0484 (17)	0.0425 (15)	0.0506 (16)	-0.0025 (13)	-0.0132 (14)	-0.0073 (13)
C2	0.059 (2)	0.0532 (17)	0.0617 (19)	-0.0109 (15)	-0.0057 (16)	-0.0137 (15)
C3	0.067 (2)	0.076 (2)	0.070 (2)	-0.0011 (18)	0.0040 (19)	-0.0255 (18)
C4	0.062 (2)	0.073 (2)	0.082 (2)	-0.0127 (18)	0.0097 (18)	-0.009 (2)
C5	0.064 (2)	0.0551 (19)	0.071 (2)	-0.0166 (16)	-0.0079 (18)	-0.0086 (16)
C6	0.0522 (18)	0.0390 (15)	0.0577 (17)	-0.0076 (13)	-0.0130 (14)	-0.0054 (13)
C7	0.066 (2)	0.0492 (17)	0.0615 (19)	-0.0230 (15)	-0.0092 (17)	-0.0112 (14)
C8	0.078 (2)	0.0469 (17)	0.0623 (19)	-0.0144 (16)	-0.0024 (17)	-0.0166 (15)
C9	0.0591 (19)	0.0429 (15)	0.0546 (17)	-0.0144 (14)	-0.0032 (15)	-0.0123 (14)
C10	0.0442 (17)	0.0424 (15)	0.0528 (17)	-0.0098 (12)	-0.0124 (14)	-0.0063 (13)
C11	0.0482 (17)	0.0383 (15)	0.0526 (16)	-0.0085 (12)	-0.0079 (14)	-0.0135 (13)
C12	0.0491 (17)	0.0358 (15)	0.0532 (17)	-0.0065 (12)	-0.0074 (14)	-0.0073 (13)
C13	0.0442 (16)	0.0420 (15)	0.0508 (16)	-0.0078 (12)	-0.0064 (13)	-0.0141 (13)

C14	0.0471 (17)	0.0368 (15)	0.0542 (17)	-0.0097 (12)	-0.0012 (14)	-0.0150 (13)
C15	0.0437 (17)	0.0387 (15)	0.0497 (16)	-0.0033 (12)	-0.0015 (13)	-0.0090 (12)
C16	0.060 (2)	0.0384 (15)	0.0595 (18)	-0.0057 (13)	-0.0017 (16)	-0.0076 (13)
C17	0.070 (2)	0.0507 (18)	0.062 (2)	0.0003 (15)	-0.0131 (17)	0.0014 (15)
C18	0.070 (2)	0.064 (2)	0.067 (2)	-0.0052 (17)	-0.0264 (17)	-0.0092 (17)
C19	0.061 (2)	0.0501 (17)	0.0634 (19)	-0.0105 (14)	-0.0183 (16)	-0.0095 (15)
C20	0.0441 (17)	0.0435 (15)	0.0482 (16)	-0.0068 (12)	-0.0064 (13)	-0.0117 (12)
C21	0.0450 (17)	0.0456 (16)	0.0598 (18)	-0.0108 (13)	-0.0067 (14)	-0.0182 (14)
C22	0.0436 (17)	0.0497 (16)	0.0535 (17)	-0.0061 (13)	-0.0048 (14)	-0.0132 (14)
C23	0.058 (2)	0.0542 (18)	0.0637 (19)	-0.0142 (15)	-0.0085 (16)	-0.0064 (15)
C24	0.0517 (19)	0.0571 (18)	0.069 (2)	-0.0146 (14)	-0.0073 (16)	-0.0231 (16)
C25	0.0490 (19)	0.068 (2)	0.0565 (18)	-0.0022 (15)	-0.0049 (15)	-0.0234 (16)
C26	0.060 (2)	0.064 (2)	0.0589 (19)	-0.0088 (16)	-0.0124 (16)	-0.0061 (16)
C27	0.056 (2)	0.0501 (17)	0.0644 (19)	-0.0127 (14)	-0.0061 (16)	-0.0082 (15)
C28	0.055 (2)	0.097 (3)	0.075 (2)	-0.0125 (18)	-0.0226 (18)	-0.025 (2)
O3	0.0790 (18)	0.0612 (15)	0.0881 (17)	-0.0015 (12)	-0.0025 (14)	-0.0261 (13)
C29	0.095 (3)	0.099 (3)	0.097 (3)	-0.006 (3)	-0.022 (3)	-0.025 (2)
C30	0.108 (4)	0.110 (4)	0.139 (4)	0.014 (3)	-0.016 (3)	0.005 (3)

Geometric parameters (Å, °)

O1—C9	1.352 (3)	C15—C20	1.427 (3)
O1—H1	0.8200	C16—C17	1.364 (4)
O2—C12	1.358 (3)	С16—Н16	0.9300
O2—H2	0.80 (4)	C17—C18	1.397 (4)
N—C21	1.280 (3)	С17—Н17	0.9300
N—C22	1.420 (4)	C18—C19	1.357 (4)
C1—C2	1.407 (4)	C18—H18	0.9300
C1—C10	1.408 (4)	C19—C20	1.417 (4)
C1—C6	1.439 (4)	С19—Н19	0.9300
C2—C3	1.363 (4)	C21—H21	0.9300
C2—H2A	0.9300	C22—C27	1.377 (4)
C3—C4	1.394 (5)	C22—C23	1.397 (4)
С3—Н3	0.9300	C23—C24	1.366 (4)
C4—C5	1.354 (4)	С23—Н23	0.9300
C4—H4	0.9300	C24—C25	1.382 (4)
C5—C6	1.407 (4)	C24—H24	0.9300
С5—Н5	0.9300	C25—C26	1.387 (4)
C6—C7	1.405 (4)	C25—C28	1.515 (4)
С7—С8	1.346 (4)	C26—C27	1.375 (4)
С7—Н7	0.9300	С26—Н26	0.9300
C8—C9	1.429 (4)	С27—Н27	0.9300
С8—Н8	0.9300	C28—H28A	0.9600
C9—C10	1.379 (4)	C28—H28B	0.9600
C10-C11	1.512 (3)	C28—H28C	0.9600
C11—C12	1.368 (4)	O3—C29	1.444 (4)
C11—C20	1.425 (4)	O3—H3A	0.8200
C12—C13	1.441 (3)	C29—C30	1.480 (6)
C13—C14	1.375 (4)	С29—Н29А	0.9700

C13—C21	1.439 (4)	С29—Н29В	0.9700
C14—C15	1.400 (4)	С30—Н30А	0.9600
C14—H14	0.9300	С30—Н30В	0.9600
C15—C16	1.417 (4)	С30—Н30С	0.9600
С9—О1—Н1	109.5	C16—C17—H17	120.7
С12—О2—Н2	111 (3)	С18—С17—Н17	120.7
C21—N—C22	120.8 (2)	C19—C18—C17	122.7 (3)
C2-C1-C10	122.8 (3)	С19—С18—Н18	118.6
C2—C1—C6	117.5 (3)	С17—С18—Н18	118.6
C10—C1—C6	119.7 (2)	C18—C19—C20	120.3 (3)
C3—C2—C1	121.1 (3)	С18—С19—Н19	119.9
C3—C2—H2A	119.4	C20-C19-H19	119.9
C1—C2—H2A	119.4	C19—C20—C11	122.8 (2)
C2 - C3 - C4	121.0 (3)	C19—C20—C15	117.6 (3)
С2—С3—Н3	119.5	$C_{11} - C_{20} - C_{15}$	119.6 (2)
C4—C3—H3	119.5	N-C21-C13	123.0(3)
$C_{5} - C_{4} - C_{3}$	120.2 (3)	N—C21—H21	118 5
C5—C4—H4	119.9	$C_{13} = C_{21} = H_{21}$	118.5
$C_3 - C_4 - H_4$	119.9	$C_{12}^{27} - C_{22}^{27} - C_{23}^{23}$	118.2 (3)
C4-C5-C6	120.9 (3)	C27_C22_N	117.6(3)
$C_{4} = C_{5} = C_{6}$	110.5	C_{23} C_{22} N	117.0(3)
C6_C5_H5	119.5	$C_{23} = C_{22} = N$	124.2(3) 1201(3)
C7_C6_C5	122.8 (3)	$C_{24} = C_{23} = C_{22}$	120.1 (3)
C7 - C6 - C1	122.8(3) 117.9(3)	$C_{24} = C_{23} = H_{23}$	120.0
$C_{7} = C_{0} = C_{1}$	117.9 (3)	$C_{22} = C_{23} = C_{123}$	120.0
C_{2}^{8}	119.5(3)	$C_{23} = C_{24} = C_{23}$	122.0 (3)
$C_{0} = C_{1} = C_{0}$	122.0 (3)	$C_{25} = C_{24} = H_{24}$	119.0
$C_{0} = C_{1} = H_{1}$	119.0	$C_{23} - C_{24} - C_{24}$	117.0 117.7(2)
C_{0}	119.0	$C_{24} = C_{25} = C_{20}$	117.7(3)
$C_7 = C_8 = U_8$	120.4 (5)	$C_{24} = C_{25} = C_{28}$	121.0(3)
$C_{1} = C_{0} = C_{0}$	119.8	$C_{20} = C_{23} = C_{28}$	121.3(3)
$C_{9} = C_{8} = H_{8}$	119.6	$C_2/-C_{20}-C_{23}$	120.7 (5)
01 - 0 - 0	119.0(2) 120.7(2)	$C_2/-C_{20}-H_{20}$	119.7
01-09-08	120.7 (3)	C25-C26-H26	119.7
	119.8 (3)	$C_{26} = C_{27} = C_{22}$	121.3 (3)
	120.1 (2)	C26—C27—H27	119.3
C9—C10—C11	120.1 (3)	C22—C27—H27	119.3
	119.7 (2)	C25—C28—H28A	109.5
C12—C11—C20	119.4 (2)	C25—C28—H28B	109.5
C12-C11-C10	120.8 (2)	H28A—C28—H28B	109.5
C20-C11-C10	119.8 (2)	C25—C28—H28C	109.5
02	119.9 (2)	H28A—C28—H28C	109.5
02	118.7 (2)	H28B—C28—H28C	109.5
C11—C12—C13	121.3 (2)	С29—О3—НЗА	109.5
C14—C13—C21	118.8 (2)	03-C29-C30	109.6 (4)
C14—C13—C12	119.0 (2)	O3—C29—H29A	109.7
C21—C13—C12	122.2 (3)	С30—С29—Н29А	109.7
C13—C14—C15	121.3 (2)	O3—C29—H29B	109.7
C13—C14—H14	119.3	С30—С29—Н29В	109.7
C15-C14-H14	119.3	H29A—C29—H29B	108.2

C14—C15—C16	120.9 (2)	C29—C30—H30A	109.5
C14—C15—C20	119.4 (2)	C29—C30—H30B	109.5
C16-C15-C20	119.7 (3)	H30A—C30—H30B	109.5
C17—C16—C15	121.0 (3)	C29—C30—H30C	109.5
С17—С16—Н16	119.5	H30A—C30—H30C	109.5
C15-C16-H16	119.5	H30B—C30—H30C	109.5
C16—C17—C18	118.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1—H1…O3	0.82	1.95	2.753 (3)	164
O2—H2…N	0.80 (4)	1.90 (4)	2.612 (3)	148 (4)
O3—H3A···O2 ⁱ	0.82	2.08	2.844 (3)	155
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.				

